Exploring how organic matter controls structural transformations in natural aquatic nanocolloidal dispersions.
نویسندگان
چکیده
The response of the dispersion nanostructure of surface river bed sediment to the controlled removal and readdition of natural organic matter (NOM), in the absence and presence of background electrolyte, was examined using the technique of small-angle neutron scattering (SANS). Partial NOM removal induced aggregation of the mineral particles, but more extensive NOM removal restored colloidal stability. When peat humic acid (PHA) was added to a NOM-deficient sediment concentration-related structural transformations were observed: at 255 mg/L PHA aggregation of the nanocolloid was actually enhanced, but at 380 mg/L PHA disaggregation and colloidal stability were promoted. The addition of 2 mM CaCl(2) induced mild aggregation in the native sediment but not in sediments with added PHA, suggesting that the native NOM and the PHA respond differently to changes in ionic strength. A first attempt at using SANS to directly characterize the thickness and coverage of an adsorbed PHA layer in a natural nanocolloid is also presented. The results are discussed in the context of a hierarchical aquatic colloidal nanostructure, and the implications for contemporary studies of the role of dissolved organic carbon (DOC) in sustaining the transport of colloidal iron in upland catchments.
منابع مشابه
Editorial: Integrative Research on Organic Matter Cycling across Aquatic Gradients
The interface between freshwater and marine ecosystems provides a unique setting to examine the evolution of biogeochemical components derived from the landscape, inland waters, estuaries, and the ocean across distinct physiochemical gradients. A diverse body of work exploring this research topic is highlighted here with the goal of integrating our understanding of how organic matter (OM) is tr...
متن کاملOrganic matter breakdown and ecosystem metabolism: functional indicators for assessing river ecosystem health
River health monitoring traditionally has made use of structural measurements (water quality or taxonomic composition of aquatic organisms). We argue that a more complete assessment of river health should include functional metrics, such as rates of organic matter decomposition and ecosystem metabolism. Leaf breakdown links the characteristics of riparian vegetation with the activity of both aq...
متن کاملMechanisms of viscosity increase for nanocolloidal dispersions.
An EMD model for nanocolloidal dispersions considering the interaction between atoms within solid particles is developed for viscosity calculation and studying the effect of the particle size and volume fraction. Strong oscillations are observed in the pressure tensor autocorrelation function. Elimination of this oscillation is achieved by adjusting the potential among atoms of nanoparticles to...
متن کاملVariation in dissolved organic matter controls bacterial production and community composition.
An ongoing debate in ecology revolves around how species composition and ecosystem function are related. To address the mechanistic controls of this relationship, we manipulated the composition of dissolved organic matter (DOM) fed to aquatic bacteria to determine effects on both bacterial activity and community composition. Sites along terrestrial to aquatic flow paths were chosen to simulate ...
متن کاملEffect of dispersion on adsorption of atrazine by aqueous suspensions of fullerenes.
With the widespread application of fullerenes, it is critical to assess their environmental behaviors and their impacts on the transport and bioavailability of organic contaminants. The effects of fullerene particle size, chemistry of the solution, and natural organic matter on the adsorption of atrazine by aqueous dispersions of fullerenes (C(60)) were investigated in this work. The results sh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental science & technology
دوره 46 13 شماره
صفحات -
تاریخ انتشار 2012